Grundwissen Chemie 9. Jahrgangsstufe (NTG)

Das Grundwissen der 9. Jahrgangsstufe im Fach "Chemie" stellen wir euch in Kärtchenform zur Verfügung.

Die Grundwissens-Kärtchen könnt ihr euch selbst herstellen!

9.1 Qualitative Analysenmethoden

Ionennachweise	Alkali- und Erdalkalimetalle werden mit der Flammenfärbung nachgewiesen: Li⁺ ⇒ rot Ca²⁺ ⇒ ziegelrot Na⁺ ⇒ gelb Ba²⁺ ⇒ grün K⁺ ⇒ rosa (Kobaltglas!) Anionen können z. B. durch Fällung nachgewiesen werden: Mit AgNO₃: Cl⁻ (AgCl, weißer Niederschlag) Br⁻ (AgBr, hellgelber NS) I (AgI, gelber NS) Mit BaCl₂: SO₄²⁻ (BaSO₄, weißer NS)
Nachweis molekular gebauter Stoffe	$CO_2\Rightarrow$ Einleitung in Kalkwasser \Rightarrow weißer NS $O_2\Rightarrow$ Glimmspanprobe $H_2\Rightarrow$ Knallgasprobe $H_2O\Rightarrow$ Blaufärbung des wasserfreien CuSO ₄ $I_2\Rightarrow$ mit Stärkelösung \Rightarrow tiefblaue Färbung

9.2 Quantitative Aspekte chemischer Reaktionen	
Stoffmenge n Avogadro-Konstante N _A	 Stoffmenge n Die Stoffmenge n gibt an, wie viele Teilchen in einer Stoffportion enthalten sind. Einheit der Stoffmenge n [mol] 1 mol eines Stoffes enthält immer N_A Teilchen. Avogadro-Konstante N_A Die Avogadro-Konstante N_A gibt an, wie viele Teilchen in 1 mol Stoffportion enthalten sind. N_A = 6,022 • 10²³/mol
Molare Masse M Molares Volumen V _m	 Molare Masse M = Masse von 1 mol Teilchen; stoffspezifische Konstante M = m/n [g/mol] Molares Volumen V_m = Volumen von 1 mol Gasteilchen V_m = V/n [l/mol] = 22,4 l/mol (unter Normbedingungen: 0°C, 1013 mbar)
Atommasse – atomare Masseneinheit	Die Masseneinheit der relativen Atommasse ist die atomare Masseneinheit u (= der zwölfte Teil der Masse eines Atoms des Kohlenstoff-Isotops ¹² C) Es gilt: m (1 u) = 1 g / N _A (= 1,66 · 10 ⁻²⁴ g)
Gitterenergie	Die Gitterenergie ist die Energie, die frei wird, wenn sich 1 Mol Teilchen aus unendlicher Entfernung einander nähern und sich zu einem Kristall anordnen. Die Gitterenergie ist z.B. bei der Salzbildung von Bedeutung.

9.3 Molekuistruktur und Stolleigenschaft	•
Orbital Quelle: http://de.wikipedia.org/wiki/Orbital z.B. Wasserstoffatom H	Ein Orbital ist der Raum, in dem sich maximal zwei Elektronen mit größter Wahrscheinlich- keit aufhalten.
Atombindung	Überlappung zweier Orbitale führt zur Bindung von Atomen durch ein gemeinsames, bindendes Elektronenpaar (Elektronenpaarbindung). Schematische Darstellung: Quelle: http://home.eduhi.at/just4f un/sites/bilder/A-TOM.GIF
Elektronegativität (EN)	Fähigkeit eines Atoms, die Elektronen einer Atombindung mehr an sich zu ziehen.
Polare Atombindung	Atombindung, bei der die Bindungselektronen zum elektronegativeren Atom verschoben sind. z. B.

Dipolmolekül	Voraussetzung: polare Atombindung(en) Wasser $2\delta^{-}$ δ^{+} H Dipol Kohlenstoffdioxid δ^{-} δ^{+} $O = C = O$ Kein Dipol			
Elektronenpaarabstoßungs-Modell (EPA – Modell)	Sowohl bindende als auch nichtbindende Elektronenpaare stoßen sich elektrostatisch ab, so dass sich die Atome im Molekül räumlich optimiert anordnen: o tetraedrisch: z.B. Methan (Bindungswinkel 109,5°) o pyramidal: z.B. Ammoniak (Bindungswinkel 107°) o gewinkelt: z.B. Wasser (Bindungswinkel 104,5°)			
Beispiele für zwischenmolekulare Kräfte	- van-der-Waals-Kräfte - Dipol-Dipol-Kräfte - Wasserstoffbrückenbindungen ▼			
Wasserstoffbrückenbindungen ("H-Brücken") Beispiel: Wasser	Eine H-Brücke beruht auf der Anziehung zwischen einem stark positiv polarisierten Wasserstoffatom eines Moleküls und dem freien Elektronenpaar der stark negativ polarisierten Atome F, O, N eines benachbarten Moleküls.			

Besondere Eigenschaften des Wassers	 hoher Siedepunkt von 100 °C: Aufgrund der starken H-Brückenbindungen hat Wasser trotz seiner geringen Molekülmasse einen sehr hohen Siedepunkt. größte Dichte bei 4 °C: dichteste Packung der Wassermoleküle Eis schwimmt auf Wasser: Eis mit geringerer Dichte als bei 4 °C ⇒ "Anomalie des Wassers"
Dipol-Dipol-Kräfte	Elektrostatische Anziehung zwischen perma- nenten Dipolen
Van-der-Waals-Kräfte	Schwache Anziehungskräfte vor allem bei unpolaren Molekülen Spontaner Dipol: asymmetrische Ladungsverteilung führt zu +/- geladenen Bereichen im Molekül Induzierter Dipol: Polarisierung von Atomen/Molekülen durch spontane Dipole
Löslichkeit von Stoffen	 Salze (aufgebaut aus Ionen) oder polare Stoffe (z. B. Zucker) lösen sich in polaren Lösungsmitteln wie z.B. Wasser → polar in polar Unpolare Stoffe, z.B. Fette, lösen sich in unpolaren Lösungsmitteln (z. B. Benzin) → unpolar in unpolar Merke: "Ähnliches löst sich in Ähnlichem"

Kennzeichen saurer und basischer (alkalischer) Lösungen	Saure Lösungen enthalten Oxoniumionen (H₃O⁺) Basische Lösungen enthalten Hydroxidionen (OH˙)			
Indikatoren	Indikatoren sind Farbe anzeigen er, basisch (alka Indikator: Lackmus Phenolphthalein Bromthymolblau	, ob eine v	vässrige L	ösung sau-
pH–Werte (pH – Skala)	Der pH-Wert einer wässrigen Lösung gibt an, wie sauer oder basisch (alkalisch) eine Lösung ist. pH 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 $\leftarrow \qquad \qquad \downarrow \qquad \rightarrow$ sauer neutral basisch $c(H_3O^+) = c(OH^-)$ Zunahme von $c(H_3O^+)$			
Definition von Säuren und Basen nach Brønsted	Säuren sind Protonendonatoren (Protonenspender) = Brønstedsäuren Basen sind Protonenakzeptoren (Protonenempfänger) = Brønstedbasen			

Ampholyt	Ampholyte sind Teilchen, die sowohl als Säure als auch als Base reagieren können: Beispiel: H ₂ O oder HCO ₃ (oder NH ₃) (Entscheidend für das jeweilige Verhalten ist der Reaktionspartner!)
Säure-Base-Reaktionen als Protonenübergänge	Protonendonator-Protonenakzeptor–Konzept (Protolysereaktion) HCI + H₂O → H₃O⁺ + CI⁻ S1 B2 S2 B1 S1/B1 und S2/B2 sind korrespondierende Brønsted-Säure-Base-Paare
Neutralisation	Säure und Base reagieren zu Wasser und Salz. H ₃ O ⁺ + Cl ⁻ + Na ⁺ + OH ⁻ → 2 H ₂ O + Na ⁺ + Cl ⁻ Säure Base Wasser Salz
Stoffmengenkonzentration (meist kurz Konzentration genannt)	Die Stoffmengenkonzentration eines Stoffes X (= c(X)) gibt an, wie viel Mol eines Stoffes (= n(X)) in einem bestimmten Volumen (= V [Liter]) enthalten sind. c(X) = n(X)/V [mol/Liter]

Wichtige Säuren und Basen

(Je nachdem, wie viele Protonen abgegeben werden können, unterscheidet man zwischen einund mehrprotonigen Säuren.)

Anorganische Säuren und Basen:

Säuren	Formel	Basen	Formel
Salzsäure	HCI	Natriumhydroxid	NaOH
Kohlensäure	H ₂ CO ₃	Kaliumhydroxid	КОН
Schwefelsäure	H ₂ SO ₄	Calciumhydroxid	Ca(OH) ₂
Schweflige S.	H ₂ SO ₃	Bariumhydroxid	Ba(OH) ₂
Salpetersäure	HNO ₃	Ammoniak	NH ₃
Salpetrige S.	HNO ₂		
Phosphorsäure	H ₃ PO ₄		

Organische Säuren: Essigsäure, Milchsäure, Zitronensäure, Ameisensäure

9.5. Elektronenübergänge

Redoxreaktion

Beispiel:

4 Na + O₂
$$\rightarrow$$
 2 Na₂O

Eine Koppelung von Oxidations- und Reduktions-Reaktion. Hierbei werden Elektronen von einem Teilchen auf ein anderes übertragen. **Donator- und Akzeptor-Konzept** auf der Basis von Elektronen.

Redoxgleichung mit Teilgleichungen:

Ox: Na
$$\rightarrow$$
 Na⁺ + $\stackrel{\text{e}}{\bullet}$ Acd: O₂ + $\stackrel{\text{de}}{\bullet}$ \rightarrow 2 O²⁻

Redox:
$$4 \text{ Na} + O_2 \rightarrow 4 \text{ Na}^+ + 2 \text{ O}^{2-}$$

Na ist das Reduktionsmittel = Elektronendonator und wird oxidiert

O₂ ist das Oxidationsmittel = Elektronenakzeptor und wird reduziert

Oxidationszahl (OZ)

Die Oxidationszahl (OZ) ist eine Hilfszahl, die das Aufstellen von Redoxgleichungen erleichtert. Sie wird mit römischen oder arabischen Zahlen über die Elementsymbole geschrieben.

Regeln zum Erstellen von Oxidationszahlen (OZ)

- 1. OZ von **Elementen** = 0 z. B. Fe = 0; S = 0; $Cl_2 = 0$; $H_2 = 0$
- 2. Die Summe der OZ aller Atome in einem Molekül = 0
- 3. OZ von **Atomionen** entspricht der Ionenladung z.B. $Na^+ = +I$; $Mg^{2^+} = +II$; $O^{2^-} = -II$
- 4. Die Summe der OZ aller Atome im **Molekül- ion** entspricht der Ladung

- 5. Das Vorzeichen der OZ in Verbindungen ist abhängig von der Elektronegativität
 - **Metalle** haben eine positive OZ
 - Wasserstoff erhält die OZ = +I (Ausnahme: bei Metallhydriden, z.B. NaH, ist die OZ = -I)
 - Fluor enthält stets die OZ = -I
 - Sauerstoff erhält die OZ = -II (Ausnahme: bei H₂O₂ hat Sauerstoff die OZ = -I)
 - OZ der restlichen Halogene ist in der Regel = -I (Ausnahme: Verbindungen dieser Halogene mit elektronegativeren Elementen)

Regeln zum Aufstellen von Redoxgleichungen

- 1. Edukte und Produkte angeben und OZ bestimmen (Ausgleich der Atomsorten)
- Die Redoxpaare der Oxidations- und Reduktionsreaktion anhand der Änderung der OZ festlegen:

Zunahme der OZ (e-Abgabe) = Oxidation Abnahme der OZ (e-Aufnahme) = Reduktion

- 3. Die Zahl der abgegebenen und aufgenommenen Elektronen eintragen
- 4. Ladungs- und Stoffausgleich mit H₃O⁺ und H₂O im sauren Milieu und mit OH⁻ und H₂O im basischen Milieu (die Ladungen auf beiden Seiten müssen übereinstimmen)
- 5. Die Elektronen-Anzahl in beiden Gleichungen angleichen (kgV!)
- Teilgleichungen addieren und Elektronen sowie gleiche Stoffe auf der Edukt- und Produktseite "wegkürzen"

Wichtige Oxidationsmittel
und Reduktionsmittel

Oxidationsmittel = $\underline{\text{Elektronenakzeptor}}$

= Teilchen, das Elektronen aufnimmt:

z. B. O_2 , F_2 , Cl_2 , MnO_4 , Cr_2O_7 ²⁻

 $Reduktions mittel = \underline{Elektronendonator}$

= Stoff, der Elektronen abgibt:

z. B. H₂, Metalle

An einer Redoxreaktion sind immer zwei *korrespondierende Redoxpaare* beteiligt.